Search results

1 – 2 of 2
Article
Publication date: 6 July 2015

Reza Chavoshisani, Mohammad Hossein Moaiyeri and Omid Hashemipour

Current-mode approach promises faster and more precise comparators that lead to high-performance and accurate winner-take-all circuits. The purpose of this paper is to present a…

Abstract

Purpose

Current-mode approach promises faster and more precise comparators that lead to high-performance and accurate winner-take-all circuits. The purpose of this paper is to present a new high-performance, high-accuracy current-mode min/max circuit for low-voltage applications. In addition, the proposed circuit is designed based on a new efficient high-resolution current conveyor-based fully differential current comparator.

Design/methodology/approach

The proposed design detects the min and max values of two analog current signals by means of a current comparator and a logic module. The comparator compares the values of the input current signals accurately and generates two digital control signals and the logic module determines the min and max values based on the controls signals. In addition, an accurate current copy module is utilized to copy the input current signals and convey them to the comparator and the logic module.

Findings

The results of the comprehensive simulations, conducted using HSPICE with the TSMC 90 nm CMOS technology, demonstrate the high-performance and robust operation of the proposed design even in the presence of process, temperature, input current and supply voltage variations. For a case in point, for 5 μA differential input current the average propagation delay and power consumption of the proposed circuit are attained as 150 ps and 150 µW, respectively, which leads to more than 64 percent improvement in terms of power-delay product as compared with the most efficient design, previously presented in the literature.

Originality/value

A new efficient structure for current-mode min-max circuit is proposed based on a novel current comparator design which is accurate, high-performance and robust to process, voltage and temperature variations.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 May 2021

Norhamizah Idros, Alia Rosli, Zulfiqar Ali Abdul Aziz, Jagadheswaran Rajendran and Arjuna Marzuki

The purpose of this paper is to present the performance of an 8-bit hybrid DAC which is suitable for wireless application or part of a built-in test block for ADC. The hybrid…

Abstract

Purpose

The purpose of this paper is to present the performance of an 8-bit hybrid DAC which is suitable for wireless application or part of a built-in test block for ADC. The hybrid architecture used is the combination of thermometer coding and binary-weighted resistor architectures.

Design/methodology/approach

The conventional DAC topology performance tends to degrade at high-resolution applications. A hybrid topology, which combines an equal number of bits of thermometer coding and binary-weighted resistor architectures operating at higher sampling frequency, was proposed in this work. The die was fabricated in 180 nm CMOS process technology with a supplied voltage of 1.8 V.

Findings

Measured results showed that the DNL and INL errors are within −1 to +1 LSB and −0.9 to +0.9 LSB, respectively for the input range of 0.9 V at the clock rate of 200 MHz, and this DAC was proven monotonic. This 0.068 mm2 DAC consumed 12.6 mW for the data conversion.

Originality/value

This paper is of value in showing the equal division of bits from thermometer coding and binary-weighted resistor architectures provides smaller die size and enhances the performance of hybrid DAC, in terms of linearity, which are DNL and INL errors and guarantees monotonicity at higher sampling frequency.

Details

Microelectronics International, vol. 38 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 2 of 2